One half of almost symmetric numerical semigroups
نویسندگان
چکیده
منابع مشابه
Almost Symmetric Numerical Semigroups Generated by Four Elements
In this paper, we study almost symmetric numerical semigroups generated by 4-elements. Rosales and Garćıa-Sánchez [RG2] proved that every almost symmetric numerical semigroup can be constructed by removing some minimal generators from an irreducible numerical semigroup with the same Frobenius number. Using this result, we concretely construct almost symmetric numerical semigroups generated by 4...
متن کاملOn Symmetric Numerical Semigroups
A numerical semigroup is a subset S of N such that is closed under sums, contains the zero and generates Z as a group. From this definition Ž w x. Ž one obtains see, for example, 2 that S has a conductor C i.e., the . maximum among all the natural numbers not belonging to S . A numerical semigroup S is called symmetric if for every integer z f S, C y z g S. The study of the subsemigroups of N i...
متن کاملDuality Relation for the Hilbert Series of Almost Symmetric Numerical Semigroups
We derive the duality relation for the Hilbert series H (d; z) of almost symmetric numerical semigroup S (d) combining it with its dual H ( d; z ) . On this basis we establish the bijection between the multiset of degrees of the syzygy terms and the multiset of the gaps Fj , generators di and their linear combinations. We present the relations for the sums of the Betti numbers of even and odd i...
متن کاملSymmetric Numerical Semigroups Generated by Fibonacci and Lucas Triples
The symmetric numerical semigroups S (Fa, Fb, Fc) and S (Lk, Lm, Ln) generated by three Fibonacci (Fa, Fb, Fc) and Lucas (Lk, Lm, Ln) numbers are considered. Based on divisibility properties of the Fibonacci and Lucas numbers we establish necessary and sufficient conditions for both semigroups to be symmetric and calculate their Hilbert generating series, Frobenius numbers and genera.
متن کاملSymmetric Numerical Semigroups with Arbitrary Multiplicity and Embedding Dimension
We construct symmetric numerical semigroups S for every minimal number of generators μ(S) and multiplicity m(S), 2 ≤ μ(S) ≤ m(S) − 1. Furthermore we show that the set of their defining congruence is minimally generated by μ(S)(μ(S) − 1)/2 − 1 elements.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Semigroup Forum
سال: 2014
ISSN: 0037-1912,1432-2137
DOI: 10.1007/s00233-014-9641-9